Abstract
In this paper, we introduce a new intermixed algorithm and prove a strong convergence theorem for approximating individual fixed point of two strictly pseudocontractive mappings T and U in a q-uniformly smooth Banach space which admits a weakly sequentially continuous duality mapping jp: As a special case of the intermixed algorithm, we obtain an approximate common fixed point of two strictly pseudocontractive mappings and also applied our result to approximate a solution of an integral equation of Hammerstein type. Our results improve, complement and extend many recent results in literature.
| Original language | English |
|---|---|
| Pages (from-to) | 27-41 |
| Number of pages | 15 |
| Journal | Nonlinear Studies |
| Volume | 26 |
| Issue number | 1 |
| Publication status | Published - 2019 |
| Externally published | Yes |
Keywords
- Fixed point problem
- Intermixed algorithm
- Q-uniformly smooth Banach space
- Strictly pseudocontractive mappings
- Sunny nonexpansive retraction