TY - JOUR
T1 - Antigenic and Genetic Characterization of Serotype G2 Human Rotavirus Strains from the African Continent
AU - Page, N. A.
AU - Steele, A. D.
PY - 2004/2
Y1 - 2004/2
N2 - Serotype G2 rotavirus strains were isolated in seven countries on the African continent during 1999 and 2000. To investigate the associated DS-1 genogroup characteristics, subgroup (VP6) enzyme-linked immunosorbent assay, polyacrylamide gel electrophoresis, and P genotyping were performed on 10 G2 strains. The antigenic and genetic variation of the gene encoding the major neutralization glycoprotein (VP7) was also investigated by using G2-specific monoclonal antibodies and sequence analysis. Alterations in the characteristic DS-1 genogroup gene constellations were more likely to occur in the VP4 gene, and three genotypes were observed: P[4], P[6], and a dual P[4]-P[6] type. The failure of G2-specific monoclonal antibodies to type African G2 strains was more likely due to improper storage of the original stool, although G2 monotypes were detected. Phylogenetic analyses revealed clusters of serotype G2 strains that were more commonly associated with seasons during which G2 was predominant. No rotavirus vaccine trials have been conducted in an area where G2 strains were the predominant circulating serotype, and the continued surveillance of rotavirus epidemics in Africa will be preparation for future vaccine implementation in an area that clearly needs these preventative medicines.
AB - Serotype G2 rotavirus strains were isolated in seven countries on the African continent during 1999 and 2000. To investigate the associated DS-1 genogroup characteristics, subgroup (VP6) enzyme-linked immunosorbent assay, polyacrylamide gel electrophoresis, and P genotyping were performed on 10 G2 strains. The antigenic and genetic variation of the gene encoding the major neutralization glycoprotein (VP7) was also investigated by using G2-specific monoclonal antibodies and sequence analysis. Alterations in the characteristic DS-1 genogroup gene constellations were more likely to occur in the VP4 gene, and three genotypes were observed: P[4], P[6], and a dual P[4]-P[6] type. The failure of G2-specific monoclonal antibodies to type African G2 strains was more likely due to improper storage of the original stool, although G2 monotypes were detected. Phylogenetic analyses revealed clusters of serotype G2 strains that were more commonly associated with seasons during which G2 was predominant. No rotavirus vaccine trials have been conducted in an area where G2 strains were the predominant circulating serotype, and the continued surveillance of rotavirus epidemics in Africa will be preparation for future vaccine implementation in an area that clearly needs these preventative medicines.
UR - http://www.scopus.com/inward/record.url?scp=1242291839&partnerID=8YFLogxK
U2 - 10.1128/JCM.42.2.595-600.2004
DO - 10.1128/JCM.42.2.595-600.2004
M3 - Article
C2 - 14766822
AN - SCOPUS:1242291839
SN - 0095-1137
VL - 42
SP - 595
EP - 600
JO - Journal of Clinical Microbiology
JF - Journal of Clinical Microbiology
IS - 2
ER -