TY - JOUR
T1 - Colistin Resistance Mechanisms in Clinical Escherichia coli and Klebsiella spp. Isolates from the Western Cape of South Africa
AU - Snyman, Yolandi
AU - Whitelaw, Andrew Christopher
AU - Reuter, Sandra
AU - Maloba, Motlatji Reratilwe Bonnie
AU - Newton-Foot, Mae
N1 - Publisher Copyright:
© Copyright 2021, Mary Ann Liebert, Inc., publishers 2021.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - Objectives: Colistin is a last-resort antibiotic for the treatment of carbapenem-resistant Gram-negative infections. Colistin resistance thus poses a threat to human health. Colistin resistance is most commonly encoded by mutations in chromosomal pmrA, pmrB, phoP, phoQ, ccrB, and mgrB genes, and the presence of plasmid-mediated mcr genes. This study describes colistin resistance mechanisms in clinical Enterobacterales isolates from the Western Cape, South Africa. Results: Escherichia coli (n = 22) and Klebsiella spp. (n = 7) isolates, from nine health care facilities, were confirmed to be colistin resistant during 2016 and 2017. mcr-1 was present in 55% (12/22) of E. coli and 71% (5/7) of Klebsiella spp. isolates. Colistin resistance mutations in pmrB were identified in 8/10 mcr-negative E. coli isolates using whole-genome sequencing, with pmrB Pro-94→Gln being the most frequent with presence in 4 isolates. One mcr-negative Klebsiella spp. isolate had a complete deletion of the mgrB and one contained an insertion sequence (IS1) in mgrB. Conclusion: A reduction in the proportion of colistin-resistant isolates harboring mcr-1 from 2016 to 2017 was observed. Colistin-resistant E. coli attributed by chromosomal mutations in pmrB in 2017 were mostly clonal related, which contrasts with the 2016 unrelated mcr-1-positive isolates. The diverse strains, hospitals, and resistance mechanisms may suggest that selective pressure is the main driver of colistin resistance.
AB - Objectives: Colistin is a last-resort antibiotic for the treatment of carbapenem-resistant Gram-negative infections. Colistin resistance thus poses a threat to human health. Colistin resistance is most commonly encoded by mutations in chromosomal pmrA, pmrB, phoP, phoQ, ccrB, and mgrB genes, and the presence of plasmid-mediated mcr genes. This study describes colistin resistance mechanisms in clinical Enterobacterales isolates from the Western Cape, South Africa. Results: Escherichia coli (n = 22) and Klebsiella spp. (n = 7) isolates, from nine health care facilities, were confirmed to be colistin resistant during 2016 and 2017. mcr-1 was present in 55% (12/22) of E. coli and 71% (5/7) of Klebsiella spp. isolates. Colistin resistance mutations in pmrB were identified in 8/10 mcr-negative E. coli isolates using whole-genome sequencing, with pmrB Pro-94→Gln being the most frequent with presence in 4 isolates. One mcr-negative Klebsiella spp. isolate had a complete deletion of the mgrB and one contained an insertion sequence (IS1) in mgrB. Conclusion: A reduction in the proportion of colistin-resistant isolates harboring mcr-1 from 2016 to 2017 was observed. Colistin-resistant E. coli attributed by chromosomal mutations in pmrB in 2017 were mostly clonal related, which contrasts with the 2016 unrelated mcr-1-positive isolates. The diverse strains, hospitals, and resistance mechanisms may suggest that selective pressure is the main driver of colistin resistance.
KW - Enterobacterales
KW - South Africa
KW - colistin resistance
KW - mutations
KW - whole genome sequencing
UR - http://www.scopus.com/inward/record.url?scp=85103310186&partnerID=8YFLogxK
U2 - 10.1089/mdr.2020.0479
DO - 10.1089/mdr.2020.0479
M3 - Article
C2 - 33571049
AN - SCOPUS:85103310186
SN - 1076-6294
VL - 27
SP - 1249
EP - 1258
JO - Microbial Drug Resistance
JF - Microbial Drug Resistance
IS - 9
ER -