Dispersive optical solitons with DWDM topology and multiplicative white noise

Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Anjan Biswas, Yakup Yıldırım*, Luminita Moraru, Catalina Iticescu, Simona Moldovanu, Dorin Bibicu, Abdulah A. Alghamdi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The primary objective of this research is to investigate and analyze the intricate dynamics exhibited by dispersive optical soliton solutions within dispersion-flattened fibers while considering the impact of white noise. By examining this phenomenon, the study aims to gain a comprehensive understanding of the behavior and characteristics of these solitons, which are essential in the field of optical communication. A wide range of soliton solutions is obtained by the extended auxiliary equation procedure and the unified Riccati equation scheme, which are two powerful methods employed in the field of nonlinear dynamics and soliton theory to obtain a diverse array of soliton solutions. These techniques enable researchers to explore and analyze a wide range of complex nonlinear phenomena in various physical systems. This wide range of soliton solutions contributes to a deeper understanding of nonlinear phenomena and provides valuable insights into the fundamental properties and applications of solitons in different areas of science and engineering, including optics, fluid dynamics, plasma physics, and condensed matter physics. White noise only affects the phase part of the solitons and does not spread to other components. Such conclusions are applicable only under the specific transformation and the special simplification employed in deriving the solutions in the paper. The existence of white noise does not change the soliton amplitudes, widths, or velocities in any component. This paper is the first to report an essential observation concerning dispersion-flattened fibers, which has never been reported before.

Original languageEnglish
Article number106723
JournalResults in Physics
Volume51
DOIs
Publication statusPublished - Aug 2023
Externally publishedYes

Keywords

  • DWDM system
  • Dispersive optical soliton solutions
  • Extended auxiliary equation procedure
  • Multiplicative white noise
  • Unified Riccati equation scheme

Fingerprint

Dive into the research topics of 'Dispersive optical solitons with DWDM topology and multiplicative white noise'. Together they form a unique fingerprint.

Cite this