Engineering and modeling the effect of Mg doping in TiO2 for enhanced photocatalytic reduction of CO2 to fuels

Joshua O. Olowoyo, Manoj Kumar, Nikita Singhal, Suman L. Jain, Jonathan O. Babalola, Alexander V. Vorontsov*, Umesh Kumar

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Mg-Doped TiO2 nanoparticles were prepared via a modified sonothermal method, and their photocatalytic activities were investigated for the reduction of CO2 with H2O. The structural properties of the prepared catalysts with varying Mg doping levels were studied by UV-vis spectroscopy, N2 adsorption-desorption, XRD, SEM, TEM, and XPS. CO, H2, CH3OH, and CH4 were the major products observed with a maximum production rate of 29.2, 28.7, 5910.0 and 2.3 μmol g-1 h-1, respectively. Preferable Mg doping sites in TiO2 nanoparticles and interaction of CO2 with Mg-doped TiO2 were studied computationally. Modeling revealed that (101) facets and junctions of (101)/(101) and (001)/(101) facets are the preferred locations of surface Mg atoms. Adsorption of CO2 proceeds in the bent carbonate and hydrocarbonate forms. The increased activity of Mg-doped TiO2 is explained by the close proximity of surface Mg reaction sites to the positions of photogenerated electrons on (101) facets.

Original languageEnglish
Pages (from-to)3686-3694
Number of pages9
JournalCatalysis Science and Technology
Volume8
Issue number14
DOIs
Publication statusPublished - 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Engineering and modeling the effect of Mg doping in TiO<sub>2</sub> for enhanced photocatalytic reduction of CO<sub>2</sub> to fuels'. Together they form a unique fingerprint.

Cite this