Evaluation of the impacts of formulation variables and excipients on the Drug release dynamics of a polyamide 6,10-based monolithic matrix using mathematical tools

Oluwatoyin Ayotomilola Adeleke, Yahya E. Choonara, Pradeep Kumar, Lisa C. Du Toit, Lomas K. Tomar, Charu Tyagi, Viness Pillay*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Drug release from hydrophilic matrices is regulated mainly by polymeric erosion, disentanglement, dissolution, swelling front movement, drug dissolution and diffusion through the polymeric matrix. These processes depend upon the interaction between the dissolution media, polymeric matrix and drug molecules, which can be significantly influenced by formulation variables and excipients. This study utilized mathematical parameters to evaluate the impacts of selected formulation variables and various excipients on the release performance of hydrophilic polyamide 6,10 (PA 6,10) monolithic matrix. Amitriptyline HCl and theophylline were employed as the high and low solubility model drugs, respectively. The incorporation of different excipient concentrations and changes in formulation components influenced the drug release dynamics as evidenced by computed mathematical quantities (tx%,MDT x%,f1, f2, k1, k2, and kF). The effects of excipients on drug release from the PA 6,10 monolithic matrix was further elucidated using static lattice atomistic simulations wherein the component energy refinements corroborates the in vitro and in silico experimental data. Consequently, the feasibility of modulating release kinetics of drug molecules from the novel PA 6,10 monolithic matrix was well suggested.

Original languageEnglish
Pages (from-to)1349-1359
Number of pages11
JournalAAPS PharmSciTech
Volume14
Issue number4
DOIs
Publication statusPublished - Dec 2013
Externally publishedYes

Keywords

  • Excipients
  • Formulation variables
  • Mathematical tools
  • Monolithic matrix
  • Polyamide 6 10

Fingerprint

Dive into the research topics of 'Evaluation of the impacts of formulation variables and excipients on the Drug release dynamics of a polyamide 6,10-based monolithic matrix using mathematical tools'. Together they form a unique fingerprint.

Cite this