TY - JOUR
T1 - Forecasting drug utilization and expenditure in a metropolitan health region
AU - Wettermark, Björn
AU - Persson, Marie E.
AU - Wilking, Nils
AU - Kalin, Mats
AU - Korkmaz, Seher
AU - Hjemdahl, Paul
AU - Godman, Brian
AU - Petzold, Max
AU - Gustafsson, Lars L.
N1 - Funding Information:
This development and research has been feasible due to commitment and expertise from a number of people. We particularly express our gratitude to Tore Andersson, Göran Holm, Margaretha Julander, Bo Ringertz and Maria von Witting from the Department of Drug Management and Informatics and Henrik Almkvist and Gunilla Thörnwall-Bergendahl at the Department of Finance and Planning, both Stockholm County Council The work has been funded by Stockholm County Council and partly by Karolinska Institutet. The Regional Drug Expert Consortium also includes; Eva Andersén-Karlsson, Peter Aspelin, Jonas Bergh, Bo Billing, Peter Ekman, Carl-Gustaf Elinder, Mia von Euler, Johan Franck, Urban Hellgren, Michael Lagerkranser, Lena Lundeberg, Angelica L Hirschberg, Gerd Lärfars, Georgios Panagiotidis, Jan Persson, Daniel Schmidt, Gunilla Sundelin, Leif Tallstedt, Matti Viitanen, Åke Örtqvist
PY - 2010
Y1 - 2010
N2 - Background. New pharmacological therapies are challenging the healthcare systems, and there is an increasing need to assess their therapeutic value in relation to existing alternatives as well as their potential budget impact. Consequently, new models to introduce drugs in healthcare are urgently needed. In the metropolitan health region of Stockholm, Sweden, a model has been developed including early warning (horizon scanning), forecasting of drug utilization and expenditure, critical drug evaluation as well as structured programs for the introduction and follow-up of new drugs. The aim of this paper is to present the forecasting model and the predicted growth in all therapeutic areas in 2010 and 2011. Methods. Linear regression analysis was applied to aggregate sales data on hospital sales and dispensed drugs in ambulatory care, including both reimbursed expenditure and patient co-payment. The linear regression was applied on each pharmacological group based on four observations 2006-2009, and the crude predictions estimated for the coming two years 2010-2011. The crude predictions were then adjusted for factors likely to increase or decrease future utilization and expenditure, such as patent expiries, new drugs to be launched or new guidelines from national bodies or the regional Drug and Therapeutics Committee. The assessment included a close collaboration with clinical, clinical pharmacological and pharmaceutical experts from the regional Drug and Therapeutics Committee. Results. The annual increase in total expenditure for prescription and hospital drugs was predicted to be 2.0% in 2010 and 4.0% in 2011. Expenditures will increase in most therapeutic areas, but most predominantly for antineoplastic and immune modulating agents as well as drugs for the nervous system, infectious diseases, and blood and blood-forming organs. Conclusions. The utilisation and expenditure of drugs is difficult to forecast due to uncertainties about the rate of adoption of new medicines and various ongoing healthcare reforms and activities to improve the quality and efficiency of prescribing. Nevertheless, we believe our model will be valuable as an early warning system to start developing guidance for new drugs including systems to monitor their effectiveness, safety and cost-effectiveness in clinical practice.
AB - Background. New pharmacological therapies are challenging the healthcare systems, and there is an increasing need to assess their therapeutic value in relation to existing alternatives as well as their potential budget impact. Consequently, new models to introduce drugs in healthcare are urgently needed. In the metropolitan health region of Stockholm, Sweden, a model has been developed including early warning (horizon scanning), forecasting of drug utilization and expenditure, critical drug evaluation as well as structured programs for the introduction and follow-up of new drugs. The aim of this paper is to present the forecasting model and the predicted growth in all therapeutic areas in 2010 and 2011. Methods. Linear regression analysis was applied to aggregate sales data on hospital sales and dispensed drugs in ambulatory care, including both reimbursed expenditure and patient co-payment. The linear regression was applied on each pharmacological group based on four observations 2006-2009, and the crude predictions estimated for the coming two years 2010-2011. The crude predictions were then adjusted for factors likely to increase or decrease future utilization and expenditure, such as patent expiries, new drugs to be launched or new guidelines from national bodies or the regional Drug and Therapeutics Committee. The assessment included a close collaboration with clinical, clinical pharmacological and pharmaceutical experts from the regional Drug and Therapeutics Committee. Results. The annual increase in total expenditure for prescription and hospital drugs was predicted to be 2.0% in 2010 and 4.0% in 2011. Expenditures will increase in most therapeutic areas, but most predominantly for antineoplastic and immune modulating agents as well as drugs for the nervous system, infectious diseases, and blood and blood-forming organs. Conclusions. The utilisation and expenditure of drugs is difficult to forecast due to uncertainties about the rate of adoption of new medicines and various ongoing healthcare reforms and activities to improve the quality and efficiency of prescribing. Nevertheless, we believe our model will be valuable as an early warning system to start developing guidance for new drugs including systems to monitor their effectiveness, safety and cost-effectiveness in clinical practice.
UR - http://www.scopus.com/inward/record.url?scp=77954095770&partnerID=8YFLogxK
U2 - 10.1186/1472-6963-10-128
DO - 10.1186/1472-6963-10-128
M3 - Article
C2 - 20478043
AN - SCOPUS:77954095770
SN - 1472-6963
VL - 10
JO - BMC Health Services Research
JF - BMC Health Services Research
M1 - 128
ER -