TY - JOUR
T1 - FORECASTING UNEMPLOYMENT RATE IN SOUTH AFRICA WITH UNEXPECTED EVENTS USING ROBUST ESTIMATORS
AU - Nkoane, Simon Setsweke
AU - Seeletse, Solly Matshonasi
N1 - Publisher Copyright:
© 2021. International Journal of Economics and Finance Studies.All Rights Reserved.
PY - 2021
Y1 - 2021
N2 - The purpose of the study is to build the time series model and forecast the unemployment rate in South Africa in the presence of the unexpected events or contamination of data using robust estimators. Robust estimators deal with outliers (unexpected events) when identifying the orders, with a view to estimating the parameters of the time series models. Often, time series data are contaminated with anomalies or outliers. The standard methods of parameter estimation such as maximum likelihood (ML), least squares (LS) and method moments (MM) are sensitive to outliers. The quarterly unemployment time series data over time of January 2010 through December 2020 is used. Outliers are identified, and not removed and an ARIMA (1, 1, 1) model is found to be the best suitable model for the unemployment series. An accuracy of the forecast is measured by the standard methods, such as the RMSE, MAPE, and MAE.
AB - The purpose of the study is to build the time series model and forecast the unemployment rate in South Africa in the presence of the unexpected events or contamination of data using robust estimators. Robust estimators deal with outliers (unexpected events) when identifying the orders, with a view to estimating the parameters of the time series models. Often, time series data are contaminated with anomalies or outliers. The standard methods of parameter estimation such as maximum likelihood (ML), least squares (LS) and method moments (MM) are sensitive to outliers. The quarterly unemployment time series data over time of January 2010 through December 2020 is used. Outliers are identified, and not removed and an ARIMA (1, 1, 1) model is found to be the best suitable model for the unemployment series. An accuracy of the forecast is measured by the standard methods, such as the RMSE, MAPE, and MAE.
KW - Economy
KW - Robust estimation
KW - Unemployment rate
KW - Unexpected events
UR - http://www.scopus.com/inward/record.url?scp=85129842003&partnerID=8YFLogxK
U2 - 10.34109/ijefs.20212010
DO - 10.34109/ijefs.20212010
M3 - Article
AN - SCOPUS:85129842003
SN - 1309-8055
VL - 13
SP - 199
EP - 222
JO - International Journal of Economics and Finance Studies
JF - International Journal of Economics and Finance Studies
IS - 2
ER -