TY - JOUR
T1 - Genomic profiling for piroplasms in feeding ixodid ticks in the eastern Cape, South Africa
AU - Adelabu, Olusesan Adeyemi
AU - Iweriebor, Benson Chuks
AU - Okoh, Anthony Ifeanyi
AU - Obi, Larry Chikwelu
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/12
Y1 - 2020/12
N2 - Importation of tick-infected animals and the uncontrollable migration of birds and wild animals across borders can lead to geographical expansion and redistribution of ticks and pathogen vectors, thus leading to the emergence and re-emergence of tick-borne diseases in humans and animals. Comparatively, little is known about the occurrence of piroplasms in ixodid ticks in the Eastern Cape, South Africa, thus necessitating this study, which is aimed at detecting piroplasms (Theileria and Babesia) from feeding tick samples collected from cattle, sheep, and goats in selected sites in the Eastern Cape, South Africa. A total of 1200 feeding ixodid ticks collected from farm animals at selected homesteads were first subjected to molecular identification using mitochondrial 12S ribosomal RNA (rRNA) gene by PCR and were further tested for the presence of piroplasms through amplification of the 18S rRNA gene via nested-PCR followed by sequencing of the PCR products. The results indicated that 853 (71.1%) corresponded to the genus Rhipicephalus, 335 (27.9%) corresponded to genus Amblyomma, and 12 (1%) corresponded to genus Haemaphysalis. Amblyomma hebraeum and Rhipicephalus appendiculatus were the most common identified ticks from this study. The 18S rRNA nested-PCR revealed that 44 (3.7%) samples were confirmed positive for Theileria. A homology search for the generated sequences revealed a high percentage identity of 98–98.9% similarity to T. buffeli, T. orientalis, and T. sergenti in the GenBank. Based on the results obtained herein, we conclude that there is a big diversity of Theileria species; therefore, we suggest that this research should cover more geographical areas in order to reveal the true prevalence of this pathogen in the studied area because this will be a great step in the possible prevention of an outbreak that could have devastating effects on livestock production and human health in both the studied areas and South Africa at large.
AB - Importation of tick-infected animals and the uncontrollable migration of birds and wild animals across borders can lead to geographical expansion and redistribution of ticks and pathogen vectors, thus leading to the emergence and re-emergence of tick-borne diseases in humans and animals. Comparatively, little is known about the occurrence of piroplasms in ixodid ticks in the Eastern Cape, South Africa, thus necessitating this study, which is aimed at detecting piroplasms (Theileria and Babesia) from feeding tick samples collected from cattle, sheep, and goats in selected sites in the Eastern Cape, South Africa. A total of 1200 feeding ixodid ticks collected from farm animals at selected homesteads were first subjected to molecular identification using mitochondrial 12S ribosomal RNA (rRNA) gene by PCR and were further tested for the presence of piroplasms through amplification of the 18S rRNA gene via nested-PCR followed by sequencing of the PCR products. The results indicated that 853 (71.1%) corresponded to the genus Rhipicephalus, 335 (27.9%) corresponded to genus Amblyomma, and 12 (1%) corresponded to genus Haemaphysalis. Amblyomma hebraeum and Rhipicephalus appendiculatus were the most common identified ticks from this study. The 18S rRNA nested-PCR revealed that 44 (3.7%) samples were confirmed positive for Theileria. A homology search for the generated sequences revealed a high percentage identity of 98–98.9% similarity to T. buffeli, T. orientalis, and T. sergenti in the GenBank. Based on the results obtained herein, we conclude that there is a big diversity of Theileria species; therefore, we suggest that this research should cover more geographical areas in order to reveal the true prevalence of this pathogen in the studied area because this will be a great step in the possible prevention of an outbreak that could have devastating effects on livestock production and human health in both the studied areas and South Africa at large.
KW - Babesia
KW - Emergence
KW - Ixodid
KW - Outbreak
KW - Piroplasms
KW - Theileria
UR - http://www.scopus.com/inward/record.url?scp=85098121529&partnerID=8YFLogxK
U2 - 10.3390/pathogens9121061
DO - 10.3390/pathogens9121061
M3 - Article
C2 - 33353073
AN - SCOPUS:85098121529
SN - 2076-0817
VL - 9
SP - 1
EP - 13
JO - Pathogens
JF - Pathogens
IS - 12
M1 - 1061
ER -