In silico analysis of mutations associated with occult hepatitis B virus (HBV) infection in South Africa

Matthew Olagbenro, Motswedi Anderson, Simani Gaseitsiwe, Eleanor A. Powell, Maemu P. Gededzha, Selokela G. Selabe, Jason T. Blackard*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Occult hepatitis B virus (OBI) infection is defined by the presence of viral DNA in the liver and/or serum in absence of hepatitis B surface antigen (HBsAg). While multiple studies have identified mutations that are associated with OBI, only a small portion of these mutations have been functionally characterized in vitro. Using complementary in silico approaches, the effects of OBI-associated amino acid mutations on HBV protein function in HBV/HIV-positive ART-naïve South Africans were evaluated. Two OBI-associated mutations in the PreS1 region, one in the PreS2 region, and seven in the surface region of subgenotype A1 sequences were identified as deleterious. In subgenotype A2 sequences, 11 OBI-associated mutations in the PreS1 region, seven in the PreS2 region, and 31 in the surface region were identified as deleterious. In the polymerase region, 14 OBI-associated mutations in subgenotype A1 and 71 OBI-associated mutations in subgenotype A2 were identified as deleterious. This study utilized in silico approaches to characterize the likely impact of OBI-associated mutations on viral function, thereby identifying and prioritizing candidates and reducing the significant cost associated with functional studies that are essential for mechanistic studies of the OBI phenotype.

Original languageEnglish
JournalArchives of Virology
DOIs
Publication statusAccepted/In press - 2021

Fingerprint

Dive into the research topics of 'In silico analysis of mutations associated with occult hepatitis B virus (HBV) infection in South Africa'. Together they form a unique fingerprint.

Cite this