Metabolomics approach for predicting stomach and colon contents in dead Arctocephalus pusillus pusillus, Arctocephalus tropicalis, Lobodon carcinophaga and Ommatophoca rossii from sub-Antarctic region

Mukhethwa Micheal Mphephu, Oyinlola Micheal Olaokun, Caswell Micheal Mavimbela, Greg Hofmeyer, M. Mwale, Nqobile Monate Mkolo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The dietary habits of seals play a pivotal role in shaping management and administration policies, especially in regions with potential interactions with fisheries. Previous studies have utilized various methods, including traditional approaches, to predict seal diets by retrieving indigestible prey parts, such as calcified structures, from intestines, feces, and stomach contents. Additionally, methods evaluating nitrogen and stable isotopes of carbon have been employed. The metabolomics approach, capable of quantifying small-scale molecules in biofluids, holds promise for specifying dietary exposures and estimating disease risk. This study aimed to assess the diet composition of five seal species—Arctocephalus pusillus pusillus, Lobodon carcinophaga, Ommatophoca rossii, and Arctocephalus tropicalis 1 and 2—by analyzing stomach and colon contents collected from stranded dead seals at various locations. Metabolite concentrations in the seal stomach and colon contents were determined using Nuclear Magnetic Resonance Spectroscopy. Among the colon and stomach contents, 29 known and 8 unknown metabolites were identified. Four metabolites (alanine, fumarate, lactate, and proline) from stomach contents and one metabolite (alanine) from colon contents showed no significant differences between seal species (p>0.05). This suggests that traces of these metabolites in the stomach and colon contents may be produced by the seals’ gut microbiome or derived from other animals, possibly indicating reliance on fish caught at sea. Despite this insight, the cause of death for stranded seals remains unclear. The study highlights the need for specific and reliable biomarkers to precisely indicate dietary exposures across seal populations. Additionally, there is a call for the development of relevant metabolite and disease interaction networks to explore disease-related metabolites in seals. Ultimately, the metabolomic method employed in this study reveals potential metabolites in the stomach and colon contents of these seal species.

Original languageEnglish
Article numbere0300319
JournalPLoS ONE
Volume19
Issue number4 APRIL
DOIs
Publication statusPublished - Apr 2024

Fingerprint

Dive into the research topics of 'Metabolomics approach for predicting stomach and colon contents in dead Arctocephalus pusillus pusillus, Arctocephalus tropicalis, Lobodon carcinophaga and Ommatophoca rossii from sub-Antarctic region'. Together they form a unique fingerprint.

Cite this