TY - JOUR
T1 - Optical solitons for the concatenation model
T2 - Power-law nonlinearity
AU - Kudryashov, Nikolay A.
AU - Kutukov, Aleksandr A.
AU - Biswas, Anjan
AU - Zhou, Qin
AU - Yıldırım, Yakup
AU - Alshomrani, Ali Saleh
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/12
Y1 - 2023/12
N2 - The current paper retrieves optical soliton solutions to the concatenation model that is with power-law nonlinearity. The traveling wave hypothesis is the starting point. The detailed mathematical analysis leads to the cnoidal waves and snoidal waves, which eventually lead to the bright and singular soliton solutions when the modulus of ellipticity reaches the appropriate limiting value.
AB - The current paper retrieves optical soliton solutions to the concatenation model that is with power-law nonlinearity. The traveling wave hypothesis is the starting point. The detailed mathematical analysis leads to the cnoidal waves and snoidal waves, which eventually lead to the bright and singular soliton solutions when the modulus of ellipticity reaches the appropriate limiting value.
KW - Dispersive
KW - Gratings
KW - Kudryashov
KW - Solitons
UR - http://www.scopus.com/inward/record.url?scp=85175439551&partnerID=8YFLogxK
U2 - 10.1016/j.chaos.2023.114212
DO - 10.1016/j.chaos.2023.114212
M3 - Article
AN - SCOPUS:85175439551
SN - 0960-0779
VL - 177
JO - Chaos, Solitons and Fractals
JF - Chaos, Solitons and Fractals
M1 - 114212
ER -