TY - JOUR
T1 - Pure-Cubic Optical Solitons and Stability Analysis with Kerr Law Nonlinearity
AU - Albayrak, Pinar
AU - Ozisik, Muslum
AU - Bayram, Mustafa
AU - Secer, Aydin
AU - Das, Sebahat Ebru
AU - Biswas, Anjan
AU - Yıldırım, Yakup
AU - Mirzazadeh, Mohammad
AU - Asiri, Asim
N1 - Publisher Copyright:
© 2023 Yakup Yıldırım, et al.
PY - 2023
Y1 - 2023
N2 - In this research paper, we investigate the effects of third-order dispersion and nonlinear dispersion terms on soliton behavior for pure-cubic solitons in the absence of chromatic dispersion. The research proceeds in several stages. First, we derive the nonlinear ordinary differential equation form by utilizing the complex wave transform. In the second stage, we employ a simplified version of the new extended auxiliary equation method to derive both bright and singular optical solitons. Subsequently, we examine the influence of model parameters on these bright and singular solitons in the third stage. To support our findings, we present solution functions accompanied by effective graphical simulations. We report observations regarding the effects of parameters in the relevant sections. The validity of our results is confirmed through their satisfaction of the model equation. Furthermore, we apply the Vakhitov-Kolokolov stability criterion to ensure the stability of the obtained bright soliton solution. Notably, the novelty of this paper lies in its application of a simplified version of the extended auxiliary equation approach to recover optical solitons. This study stands apart from previously published works that utilized various expansion approaches, yielding a distinct spectrum of results.
AB - In this research paper, we investigate the effects of third-order dispersion and nonlinear dispersion terms on soliton behavior for pure-cubic solitons in the absence of chromatic dispersion. The research proceeds in several stages. First, we derive the nonlinear ordinary differential equation form by utilizing the complex wave transform. In the second stage, we employ a simplified version of the new extended auxiliary equation method to derive both bright and singular optical solitons. Subsequently, we examine the influence of model parameters on these bright and singular solitons in the third stage. To support our findings, we present solution functions accompanied by effective graphical simulations. We report observations regarding the effects of parameters in the relevant sections. The validity of our results is confirmed through their satisfaction of the model equation. Furthermore, we apply the Vakhitov-Kolokolov stability criterion to ensure the stability of the obtained bright soliton solution. Notably, the novelty of this paper lies in its application of a simplified version of the extended auxiliary equation approach to recover optical solitons. This study stands apart from previously published works that utilized various expansion approaches, yielding a distinct spectrum of results.
KW - Vakhitov-Kolokolov slope condition
KW - auxiliary equation method
KW - impact of the dispersion
KW - optical soliton
KW - pure-cubic soliton
UR - http://www.scopus.com/inward/record.url?scp=85169316850&partnerID=8YFLogxK
U2 - 10.37256/cm.4320233308
DO - 10.37256/cm.4320233308
M3 - Article
AN - SCOPUS:85169316850
SN - 2705-1064
VL - 4
SP - 530
EP - 548
JO - Contemporary Mathematics (Singapore)
JF - Contemporary Mathematics (Singapore)
IS - 3
ER -