Sampling from four geographically divergent young female populations demonstrates forensic geolocation potential in microbiomes

Thomas Clarke, Lauren Brinkac, Chris Greco, Angela T. Alleyne, Patricio Carrasco, Carolina Inotroza, Tiiseto Tau, Wichaya Wisitrasameewong, Manolito G. Torralba, Karen Nelson, Harinder Singh*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Studies of human microbiomes using new sequencing techniques have increasingly demonstrated that their ecologies are partly determined by the lifestyle and habits of individuals. As such, significant forensic information could be obtained from high throughput sequencing of the human microbiome. This approach, combined with multiple analytical techniques demonstrates that bacterial DNA can be used to uniquely identify an individual and to provide information about their life and behavioral patterns. However, the transformation of these findings into actionable forensic information, including the geolocation of the samples, remains limited by incomplete understanding of the effects of confounding factors and the paucity of diverse sequences. We obtained 16S rRNA sequences of stool and oral microbiomes collected from 206 young and healthy females from four globally diverse populations, in addition to supporting metadata, including dietary and medical information. Analysis of these microbiomes revealed detectable geolocation signals between the populations, even for populations living within the same city. Accounting for other lifestyle variables, such as diet and smoking, lessened but does not remove the geolocation signal.

Original languageEnglish
Article number18547
JournalScientific Reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'Sampling from four geographically divergent young female populations demonstrates forensic geolocation potential in microbiomes'. Together they form a unique fingerprint.

Cite this