TY - JOUR
T1 - Sequence analysis of the whole genomes of five African human G9 rotavirus strains
AU - Nyaga, Martin M.
AU - Jere, Khuzwayo C.
AU - Peenze, Ina
AU - Mlera, Luwanika
AU - van Dijk, Alberdina A.
AU - Seheri, Mapaseka L.
AU - Mphahlele, M. Jeffrey
N1 - Funding Information:
The study received financial support from the Medical Research Council and Poliomyelitis Research Foundation (PRF) in South Africa. M.M. Nyaga is grateful for the MSc bursary (10/51) received from the PRF, South Africa. We also thank the staff of MRC/Diarrhoeal Pathogens Research Unit together with Dr. H.G. O’Neill of the Department of Biochemistry, North-West University for valuable in-depth discussions and Dr. M.J. Mwenda of WHO/AFRO, Brazzaville, Congo for logistics with use of some of the samples.
PY - 2013/6
Y1 - 2013/6
N2 - The G9 rotaviruses are amongst the most common global rotavirus strains causing severe childhood diarrhoea. However, the whole genomes of only a few G9 rotaviruses have been fully sequenced and characterised of which only one G9P[6] and one G9P[8] are from Africa. We determined the consensus sequence of the whole genomes of five African human group A G9 rotavirus strains, four G9P[8] strains and one G9P[6] strain collected in Cameroon (central Africa), Kenya (eastern Africa), South Africa and Zimbabwe (southern Africa) in 1999, 2009 and 2010. Strain RVA/Human-wt/ZWE/MRC-DPRU1723/2009/G9P[8] from Zimbabwe, RVA/Human-wt/ZAF/MRC-DPRU4677/2010/G9P[8] from South Africa, RVA/Human-wt/CMR/1424/2009/G9P[8] from Cameroon and RVA/Human-wt/KEN/MRC-DPRU2427/2010/G9P[8] from Kenya were on a Wa-like genetic backbone and were genotyped as G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Strain RVA/Human-wt/ZAF/MRC-DPRU9317/1999/G9P[6] from South Africa was genotyped as G9-P[6]-I2-R2-C2-M2-A2-N1-T2-E2-H2. Rotavirus A strain MRC-DPRU9317 is the second G9 strain to be reported on a DS-1-like genetic backbone, the other being RVA/Human-wt/ZAF/GR10924/1999/G9P[6]. MRC-DPRU9317 was found to be a reassortant between DS-1-like (I2, R2, C2, M2, A2, T2, E2 and H2) and Wa-like (N1) genome segments. All the genome segments of the five strains grouped strictly according to their genotype Wa- or DS-1-like clusters. Within their respective genotypes, the genome segments of the three G9 study strains from southern Africa clustered most closely with rotaviruses from the same geographical origin and with those with the same G and P types. The highest nucleotide identity of genome segments of the study strains from eastern and central Africa regions on a Wa-like backbone was not limited to rotaviruses with G9P[8] genotypes only, they were also closely related to G12P[6], G8P[8], G1P[8] and G11P[25] rotaviruses, indicating a close inter-genotype relationship between the G9 and other rotavirus genotypes. Rotavirus strain MRC-DPRU9317 is the first G9P[6] to be characterised on a DS-1-like genetic backbone with a reassortant segment 8 (NSP2) and fourth G9P[6] to be fully sequenced globally.
AB - The G9 rotaviruses are amongst the most common global rotavirus strains causing severe childhood diarrhoea. However, the whole genomes of only a few G9 rotaviruses have been fully sequenced and characterised of which only one G9P[6] and one G9P[8] are from Africa. We determined the consensus sequence of the whole genomes of five African human group A G9 rotavirus strains, four G9P[8] strains and one G9P[6] strain collected in Cameroon (central Africa), Kenya (eastern Africa), South Africa and Zimbabwe (southern Africa) in 1999, 2009 and 2010. Strain RVA/Human-wt/ZWE/MRC-DPRU1723/2009/G9P[8] from Zimbabwe, RVA/Human-wt/ZAF/MRC-DPRU4677/2010/G9P[8] from South Africa, RVA/Human-wt/CMR/1424/2009/G9P[8] from Cameroon and RVA/Human-wt/KEN/MRC-DPRU2427/2010/G9P[8] from Kenya were on a Wa-like genetic backbone and were genotyped as G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Strain RVA/Human-wt/ZAF/MRC-DPRU9317/1999/G9P[6] from South Africa was genotyped as G9-P[6]-I2-R2-C2-M2-A2-N1-T2-E2-H2. Rotavirus A strain MRC-DPRU9317 is the second G9 strain to be reported on a DS-1-like genetic backbone, the other being RVA/Human-wt/ZAF/GR10924/1999/G9P[6]. MRC-DPRU9317 was found to be a reassortant between DS-1-like (I2, R2, C2, M2, A2, T2, E2 and H2) and Wa-like (N1) genome segments. All the genome segments of the five strains grouped strictly according to their genotype Wa- or DS-1-like clusters. Within their respective genotypes, the genome segments of the three G9 study strains from southern Africa clustered most closely with rotaviruses from the same geographical origin and with those with the same G and P types. The highest nucleotide identity of genome segments of the study strains from eastern and central Africa regions on a Wa-like backbone was not limited to rotaviruses with G9P[8] genotypes only, they were also closely related to G12P[6], G8P[8], G1P[8] and G11P[25] rotaviruses, indicating a close inter-genotype relationship between the G9 and other rotavirus genotypes. Rotavirus strain MRC-DPRU9317 is the first G9P[6] to be characterised on a DS-1-like genetic backbone with a reassortant segment 8 (NSP2) and fourth G9P[6] to be fully sequenced globally.
KW - 454® Pyrosequencing
KW - Africa
KW - Reassortment
KW - Rotavirus G9P[6] and G9P[8] strains
KW - Sequence analysis
KW - Whole genome
UR - http://www.scopus.com/inward/record.url?scp=84875274732&partnerID=8YFLogxK
U2 - 10.1016/j.meegid.2013.01.005
DO - 10.1016/j.meegid.2013.01.005
M3 - Article
C2 - 23369762
AN - SCOPUS:84875274732
SN - 1567-1348
VL - 16
SP - 62
EP - 77
JO - Infection, Genetics and Evolution
JF - Infection, Genetics and Evolution
ER -