Abstract
In this article, we introduce a new mixed-type iterative algorithm for approximation of common fixed points of two multivalued almost contractive mappings and two multivalued mappings satisfying condition (Formula presented.) in hyperbolic spaces. We consider new concepts of weak (Formula presented.) -stability and data dependence results involving two multivalued almost contractive mappings. We provide examples of multivalued almost contractive mappings to show the advantage of our new iterative algorithm over some exiting iterative algorithms. Moreover, we prove several strong ∆-convergence theorems of our new algorithm in hyperbolic spaces. Furthermore, with another novel example, we carry out a numerical experiment to compare the efficiency and applicability of a new iterative algorithm with several leading iterative algorithms. The results in this article extend and improve several existing results from the setting of linear and CAT(0) spaces to hyperbolic spaces. Our main results also extend several existing results from the setting of single-valued mappings to the setting of multivalued mappings.
Original language | English |
---|---|
Article number | 3720 |
Journal | Mathematics |
Volume | 10 |
Issue number | 20 |
DOIs | |
Publication status | Published - Oct 2022 |
Externally published | Yes |
Keywords
- data dependence
- multivalued almost contractive mappings
- multivalued mappings satisfying condition (E)
- strong and ∆-convergence
- weak w2-stability