TY - JOUR
T1 - Structural properties of the Late Pleistocene Liujiang femoral diaphyses from southern China
AU - Wei, Pianpian
AU - Cazenave, Marine
AU - Zhao, Yuhao
AU - Xing, Song
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/10
Y1 - 2023/10
N2 - The characterization of the femoral diaphysis in Pleistocene hominins with chronoecogeographical diversity plays a crucial role in evaluating evolutionary shifts in locomotor behavior and body shape. However, Pleistocene hominin fossil remains in East Asia are scarce and are widely dispersed temporally and spatially, impeding our comprehension of the nature and polarity of morphological trends. Here, we present qualitative and quantitative analyses of the cross-sectional properties and structural organization of diaphyses in two Late Pleistocene hominin femora (Liujiang PA91 and PA92) from southern China, comparing them to other Eurasian and African Pleistocene hominins. By integrating surface features and internal structure, our findings reveal that the Liujiang femora exhibit modern human-like characteristics, including a developed pilaster, a gluteal buttress, and minimum mediolateral breadth located at the midshaft. The presence of a femoral pilaster may relate to posterior cortical reinforcement and an increased anteroposterior bending rigidity along the mid-proximal to mid-distal portion of the diaphysis. Compared to archaic Homo, Liujiang and other Late Pleistocene modern human femora show a thinner mediolateral cortex and lower bending rigidity than the anteroposterior axis, and a lack of medial buttress, potentially indicating functionally related alterations in a range of pelvic and proximal femoral features throughout the Pleistocene. The femoral robusticity of the Liujiang individual resembles that of other Pleistocene hunter–gatherers from East Asia, implying comparable overall mobility or activity levels. The investigation of Liujiang femoral diaphyseal morphology contributes to a more comprehensive understanding of early modern human postcranial structural morphology in East Asia.
AB - The characterization of the femoral diaphysis in Pleistocene hominins with chronoecogeographical diversity plays a crucial role in evaluating evolutionary shifts in locomotor behavior and body shape. However, Pleistocene hominin fossil remains in East Asia are scarce and are widely dispersed temporally and spatially, impeding our comprehension of the nature and polarity of morphological trends. Here, we present qualitative and quantitative analyses of the cross-sectional properties and structural organization of diaphyses in two Late Pleistocene hominin femora (Liujiang PA91 and PA92) from southern China, comparing them to other Eurasian and African Pleistocene hominins. By integrating surface features and internal structure, our findings reveal that the Liujiang femora exhibit modern human-like characteristics, including a developed pilaster, a gluteal buttress, and minimum mediolateral breadth located at the midshaft. The presence of a femoral pilaster may relate to posterior cortical reinforcement and an increased anteroposterior bending rigidity along the mid-proximal to mid-distal portion of the diaphysis. Compared to archaic Homo, Liujiang and other Late Pleistocene modern human femora show a thinner mediolateral cortex and lower bending rigidity than the anteroposterior axis, and a lack of medial buttress, potentially indicating functionally related alterations in a range of pelvic and proximal femoral features throughout the Pleistocene. The femoral robusticity of the Liujiang individual resembles that of other Pleistocene hunter–gatherers from East Asia, implying comparable overall mobility or activity levels. The investigation of Liujiang femoral diaphyseal morphology contributes to a more comprehensive understanding of early modern human postcranial structural morphology in East Asia.
KW - Cross-sectional properties
KW - Diaphyseal morphology
KW - East Asia
KW - Modern human
UR - http://www.scopus.com/inward/record.url?scp=85171898727&partnerID=8YFLogxK
U2 - 10.1016/j.jhevol.2023.103424
DO - 10.1016/j.jhevol.2023.103424
M3 - Article
C2 - 37738922
AN - SCOPUS:85171898727
SN - 0047-2484
VL - 183
JO - Journal of Human Evolution
JF - Journal of Human Evolution
M1 - 103424
ER -