TY - JOUR
T1 - The potential role of GLUT4 transporters and insulin receptors in the hypoglycaemic activity of Ficus lutea acetone leaf extract
AU - Olaokun, Oyinlola O.
AU - McGaw, Lyndy J.
AU - Awouafack, Maurice D.
AU - Eloff, Jacobus N.
AU - Naidoo, Vinny
N1 - Publisher Copyright:
© 2014 Olaokun et al.; licensee BioMed Central Ltd.
PY - 2014/7/28
Y1 - 2014/7/28
N2 - Background: Some Ficus species have been used in traditional African medicine in the treatment of diabetes. The antidiabetic potential of certain species has been confirmed in vivo but the mechanism of activity remains uncertain.The aim was to investigate the hypoglycaemic potential of ten Ficus species focussing on glucose uptake, insulin secretion and the possible mechanism of hypoglycaemic activity.Methods: The dried and ground leaves of ten Ficus species were extracted with acetone. The dried acetone extract was reconstituted with DMSO to a concentration of 100 mg/ml which was then serially diluted and used to assay for glucose uptake in muscle, fat and liver cells, and insulin secretion in pancreatic cells.Results: Only the F. lutea extract was able to modulate glucose metabolism. In comparison to insulin in the primary muscle cells, the glucose uptake ability of the extract was 33% as effective. In the hepatoma cell line, the extract was as effective as metformin in decreasing extracellular glucose concentration by approximately 20%. In the pancreatic insulin secretory assay, the extract was 4 times greater in its secretory activity than commercial glibenclamide. With F. lutea extract significantly increasing glucose uptake in the primary muscle cells, primary fat cells, C2C12 muscle and H-4-II-E liver cells, the extract may act by increasing the activity of cell surface glucose transporters. When the 3T3-L1 pre-adipocytes were compared to the primary muscle, primary fat and C2C12 cells, the differences in the former's ability to transport glucose into the cell may be due to the absence of the GLUT4 transporter, which on activation via the insulin receptor decreases extracellular glucose concentrations. Because the pre-adipocytes failed to show any active increase in glucose uptake, the present effect has to be linked to the absence of the GLUT4 transporter.Conclusion: Only F. lutea possessed substantial in vitro activity related to glucose metabolism. Based on the effect produced in the various cell types, F. lutea also appears to be a partial agonist/antagonist of the insulin cell membrane receptor. While the clinical effectiveness of F. lutea is not known, this plant species does possess the ability to modify glucose metabolism.
AB - Background: Some Ficus species have been used in traditional African medicine in the treatment of diabetes. The antidiabetic potential of certain species has been confirmed in vivo but the mechanism of activity remains uncertain.The aim was to investigate the hypoglycaemic potential of ten Ficus species focussing on glucose uptake, insulin secretion and the possible mechanism of hypoglycaemic activity.Methods: The dried and ground leaves of ten Ficus species were extracted with acetone. The dried acetone extract was reconstituted with DMSO to a concentration of 100 mg/ml which was then serially diluted and used to assay for glucose uptake in muscle, fat and liver cells, and insulin secretion in pancreatic cells.Results: Only the F. lutea extract was able to modulate glucose metabolism. In comparison to insulin in the primary muscle cells, the glucose uptake ability of the extract was 33% as effective. In the hepatoma cell line, the extract was as effective as metformin in decreasing extracellular glucose concentration by approximately 20%. In the pancreatic insulin secretory assay, the extract was 4 times greater in its secretory activity than commercial glibenclamide. With F. lutea extract significantly increasing glucose uptake in the primary muscle cells, primary fat cells, C2C12 muscle and H-4-II-E liver cells, the extract may act by increasing the activity of cell surface glucose transporters. When the 3T3-L1 pre-adipocytes were compared to the primary muscle, primary fat and C2C12 cells, the differences in the former's ability to transport glucose into the cell may be due to the absence of the GLUT4 transporter, which on activation via the insulin receptor decreases extracellular glucose concentrations. Because the pre-adipocytes failed to show any active increase in glucose uptake, the present effect has to be linked to the absence of the GLUT4 transporter.Conclusion: Only F. lutea possessed substantial in vitro activity related to glucose metabolism. Based on the effect produced in the various cell types, F. lutea also appears to be a partial agonist/antagonist of the insulin cell membrane receptor. While the clinical effectiveness of F. lutea is not known, this plant species does possess the ability to modify glucose metabolism.
KW - African Ficus species
KW - Diabetes
KW - Ficus lutea
KW - Glucose uptake
KW - Insulin secretion
UR - http://www.scopus.com/inward/record.url?scp=84904770772&partnerID=8YFLogxK
U2 - 10.1186/1472-6882-14-269
DO - 10.1186/1472-6882-14-269
M3 - Article
C2 - 25070239
AN - SCOPUS:84904770772
SN - 1472-6882
VL - 14
JO - BMC Complementary and Alternative Medicine
JF - BMC Complementary and Alternative Medicine
IS - 1
M1 - 269
ER -