Update of rotavirus strains circulating in Africa from 2007 through 2011

Mapaseka Luyanda Seheri*, Leah Nemarude, Ina Peenze, Lufuno Netshifhefhe, Martin M. Nyaga, Harry G. Ngobeni, Gugu Maphalala, Lorens L. Maake, Duncan Steele, Jason M. Mwenda, Jeffrey M. Mphahlele

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

56 Citations (Scopus)


BACKGROUND:: The African Rotavirus Surveillance Network has been detecting and documenting rotavirus genotypes in the subcontinent since 1998, largely based on intercountry workshops conducted at Rotavirus Regional Reference Laboratories. This article reports on rotavirus genotypes generated at Regional Reference Laboratories, South Africa between 2007 and 2011 from 16 African countries. METHODS:: Stool samples were collected from <5-year-old children with diarrhea following World Health Organization criteria of hospital-based rotavirus surveillance. Enzyme immunoassay (EIA) was performed by National Laboratories. Regional Reference Laboratories retested 10% of randomly selected EIA positives and 10% of EIA negatives from each country as part of quality control. At least 50 rotavirus EIA positives from each country per year were subjected to reverse transcriptase polymerase chain reaction based on G-/P-types. Sequencing was conducted in 5-10% of each representative G or P genotype to confirm the genotype, as well as to type some of the samples that could not be genotyped with reverse transcriptase polymerase chain reaction-based methods. RESULTS:: A total of 2555 of rotavirus EIA positives were genotyped. G1 was the most predominant (28.8%), followed by G9 (17.3%), G2 (16.8%), G8 (8.2%), G12 (6.2%) and G3 (5.9%). Similarly, the P[8] strain was the most prevalent (40.6%), followed by P[6] (30.9%) and P[4] (13.9%). The top G/P combinations detected were G1P[8] (18.4%), G9P[8] (11.7%), G2P[4] (8.6%), G2P[6] (6.2%), G1P[6] (4.9%), G3P[6] (4.3%), G8P[6] (3.8%) and G12P[8] (3.1%). CONCLUSIONS:: There is high genetic diversity of rotavirus strains circulating in the subcontinent. Understanding the strain diversity pre-and postvaccine introduction are important in Africa to understand the broader impact of the rotavirus vaccines on regionally circulating strains. © 2013 Lippincott Williams and Wilkins.
Original languageEnglish
Pages (from-to)S76-S84
JournalPediatric Infectious Disease Journal
Issue numberSUPPL. 1
Publication statusPublished - 8 Jan 2014
Externally publishedYes


  • Africa
  • genotypes
  • rotavirus
  • surveillance
  • vaccine


Dive into the research topics of 'Update of rotavirus strains circulating in Africa from 2007 through 2011'. Together they form a unique fingerprint.

Cite this