USING ZERO-WASTE BASELINES TO IDENTIFY COMPRESSED AIR SYSTEM INEFFICIENCIES IN DEEP-LEVEL MINES

A. van der Merwe*, A. G.S. Gous, C. S.L. Schutte

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Inefficient compressed air systems in deep-level mines deteriorate energy performance and increase operational costs. Leaks, wastages, and misuse are common inefficiencies that necessitate an oversupply of compressed air. It is therefore important to identify where the opportunities for improvement are located. Underground mining equipment can be used to develop a zero-waste compressed air demand profile. This profile can then be simulated for the entire operation to determine a theoretical baseline. Noticeable inefficiencies are then identified by comparing the actual data with the zero-waste baselines. The results of this study showed that the surface operations oversupply compressed air by 15% (10 kg/s of air) per day. This requires an additional 80 MWh of electricity (14.5% of the total) and costs approximately R91 000 per day. The comparison with the zero-waste baselines showed that 7.9 kg/s of air is wasted at the underground levels during drilling periods, highlighting the areas that require mitigation projects to improve the performance while decreasing costs and wastages.

Original languageEnglish
Pages (from-to)55-68
Number of pages14
JournalSouth African Journal of Industrial Engineering
Volume33
Issue number3
DOIs
Publication statusPublished - Nov 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'USING ZERO-WASTE BASELINES TO IDENTIFY COMPRESSED AIR SYSTEM INEFFICIENCIES IN DEEP-LEVEL MINES'. Together they form a unique fingerprint.

Cite this