Abstract
Central obesity is the hallmark of a number of non-inheritable disorders. The advent of imaging techniques such as MRI has allowed for a fast and accurate assessment of body fat content and distribution. However, image analysis continues to be one of the major obstacles to the use of MRI in large-scale studies. In this study we assess the validity of the recently proposed fat-muscle quantitation system (AMRATM Profiler) for the quantification of intra-abdominal adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from abdominal MR images. Abdominal MR images were acquired from 23 volunteers with a broad range of BMIs and analysed using sliceOmatic, the current gold-standard, and the AMRATM Profiler based on a non-rigid image registration of a library of segmented atlases. The results show that there was a highly significant correlation between the fat volumes generated by the two analysis methods, (Pearson correlation r = 0.97, p < 0.001), with the AMRATM Profiler analysis being significantly faster (~3 min) than the conventional sliceOmatic approach (~40 min). There was also excellent agreement between the methods for the quantification of IAAT (AMRA 4.73 ± 1.99 versus sliceOmatic 4.73 ± 1.75 l, p = 0.97). For the AMRATM Profiler analysis, the intra-observer coefficient of variation was 1.6% for IAAT and 1.1% for ASAT, the inter-observer coefficient of variation was 1.4% for IAAT and 1.2% for ASAT, the intra-observer correlation was 0.998 for IAAT and 0.999 for ASAT, and the inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate that precise and accurate measures of body fat content and distribution can be obtained in a fast and reliable form by the AMRATM Profiler, opening up the possibility of large-scale human phenotypic studies.
Original language | English |
---|---|
Pages (from-to) | 1747-1753 |
Number of pages | 7 |
Journal | NMR in Biomedicine |
Volume | 28 |
Issue number | 12 |
DOIs | |
Publication status | Published - 1 Dec 2015 |
Externally published | Yes |
Keywords
- Abdominal fat
- Adipose tissue
- Dixon
- Fat quantitation
- MRI
- Obesity